A unifying analysis of projected gradient descent forℓp-constrained least squares

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unifying Analysis of Projected Gradient Descent for $ell_p$-constrained Least Squares

In this paper we study the performance of the Projected Gradient Descent (PGD) algorithm for lpconstrained least squares problems that arise in the framework of Compressed Sensing. Relying on the Restricted Isometry Property, we provide convergence guarantees for this algorithm for the entire range of 0 ≤ p ≤ 1, that include and generalize the existing results for the Iterative Hard Thresholdin...

متن کامل

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Unifying Least Squares, Total Least Squares and Data Least Squares

The standard approaches to solving overdetermined linear systems Ax ≈ b construct minimal corrections to the vector b and/or the matrix A such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to b, while in data least squares (DLS) it is restricted to A. In scaled total least squares (Scaled TLS) [15], corrections to both b and A are allowed, ...

متن کامل

superlinearly convergent exact penalty projected structured hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

we present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step q-superlinear convergence. the approach is based on an adaptive structured scheme due to mahdavi-amiri and bartels of the exact penalty method of coleman and conn for nonlinearly constrained optimization problems. the structured adaptation also makes use of the ideas of n...

متن کامل

Gradient Projection Iterative Sketch for Large-Scale Constrained Least-Squares

We propose a randomized first order optimization algorithm Gradient Projection Iterative Sketch (GPIS) and an accelerated variant for efficiently solving large scale constrained Least Squares (LS). We provide the first theoretical convergence analysis for both algorithms. An efficient implementation using a tailored linesearch scheme is also proposed. We demonstrate our methods’ computational e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2013

ISSN: 1063-5203

DOI: 10.1016/j.acha.2012.07.004